技术支持

您现在的位置:首页  >  技术文章  >  OpticStudio中偏振相关介质的种类

OpticStudio中偏振相关介质的种类
更新时间:2018-12-14浏览:1997次

偏振相关介质的种类

在OpticStudio中有多种可以改变输入光偏振态的方法。这些方法引入了偏振相关的表面或材料。下面我们来介绍三种方法并描述它们在通常情况下的应用场景。

1、琼斯矩阵 

琼斯矩阵表面是一个理想的面型并且默认输入光为垂直入射。该表面使用2x2矩阵表示琼斯向量(用来描述电场)如下式所示: 

 

其中A, B, C, D, Ex和Ey均为复值。该矩阵可以通过二维向量描述三维电场但前提假设是默认其传播方向与Z轴重合。因此,电场分量只在XY平面。如果光线确实沿Z轴准直入射系统,则该表面可以提供理想的分析结果,并描述出P和S偏振态的变化及透过率的变化。

OpticStudio也允许在斜入射的情况下使用琼斯矩阵表面,但这种情况下该分析功能只能提供近似结果。并且矩阵无法考虑电场在Z方向上的分量产生的影响,即双折射现象或菲涅尔效应等。

如果使用琼斯矩阵来模拟光延迟器件,则入射光必须垂直于该表面。如果您需要准确计算离轴的相位变化,您需要使用双折射输入 (Birefringent In) 和双折射输出 (Birefringent Out) 表面。

琼斯矩阵可以较好的模拟离轴入射下的起偏器。表面将允许电场在Z方向上传输,并可以像电场X分量和Y分量一样进行模拟。在模拟结果中和向量K平行的分量将被减去,因此电场保持与向量K垂直。如果需要生成一个表面可以改变Ez分量,您可以使用光学镀膜。

 

2、光学表面镀膜

OpticStudio允许用户定义实际镀膜或理想镀膜并将这些应用在光学系统上。同时OpticStudio的镀膜数据库包含了大量常用的膜层数据。虽然镀膜可以用于多种不同的应用环境,但本文将只关注镀膜对光线偏振态的影响。

在讨论镀膜的影响之前,我们必须考虑到电场的强度和偏振态是由向量表示的:

其中Ex, Ey, Ez均为复值。电场向量E必须垂直于光线传播的方向向量。在两种介质的边界处,透过率、反射率和电场的相位在P分量和S分量上各不相同。电场的S分量为E在与入射平面垂直的光轴方向上的分量,P分量为E在入射平面上的分量。入射平面包含光线传播向量和表面在入射点处的法向量。需要注意的是:光线在垂直表面入射时,该定义方式会变得模糊。

因此我们可以看出,P和S偏振态的定义与表面相关。如果在表面上添加了镀膜,则光线透过的比例会根据系统设置中偏振的参考方式不同而显著变化。

举例来说,有限距离内的物点发出的光穿过一个镀膜的平面,该平面镀膜只允许P光通过。该物点发出的光线具有初始偏振态Jx=0,Jy=1。当参考轴在X或Y轴中变化时,P光和S光的透过率发生显著变化。这是因为输入的偏振态Jx和Jy在表面上分别平行于全局X轴和全局Y轴。

 

然而当参考于Z轴时,Jx和Jy跟随全局Z轴旋转变化,因此偏振态没有改变。

 

因此,在使用镀膜改变光的偏振时,您需要注意输入光参考轴的定义方式。

如您想进行验证,您可以使用Ideal2或表格镀膜(Table Coating)格式文件,对P光和S光自定义透过率的实部和虚部。这些格式的镀膜数据可以非常有效的模拟理想偏振器。此外,您还可以使用优化操作数CODA针对特定偏振数据对镀膜进行优化。

3、双折射输入/输出

在OpticStudio中模拟双折射材料的方法于琼斯矩阵和表面镀膜不同。如果想要在序列模式下定义双折射元件,您必须在透镜数据编辑器中定义两个表面,即双折射输入表面和双折射输出表面。在这两个表面定义的边界之内,OpticStudio会使用两种材料,一种以双折射材料的寻常折射率来定义,另一种以非寻常折射率定义。OpticStudio会使用双折射输入面型中定义的材料折射率来定义寻常折射率。随后OpticStudio会在材料名后添加“-E”并在当前加载的材料库中寻找该材料,其折射率会用于定义非寻常折射率。

相比琼斯矩阵,该种方法允许用户计算菲涅尔系数和材料吸收以得到更加的透过率结果。用户可以选择单独追迹寻常光和非寻常光或只追迹其中一种并考虑另一种对相位的影响。该计算类型是通过双折射输入/输出中的模式 (Mode Flag) 参数来控制。使用双折射输入/输出表面模拟双折射现象的限制是它不考虑光线分裂。如果您需要考虑光线分裂,请将系统转换到非序列模式中。

北京卓立汉光仪器有限公司 版权所有    备案号:京ICP备05015148号-4

技术支持:化工仪器网    管理登陆    网站地图

联系电话:
010-5637 0168-696

微信服务号